
Core Decomposition on Uncertain Graphs
Revisited

Qiangqiang Dai , Rong-Hua Li , Guoren Wang , Rui Mao , Zhiwei Zhang, and Ye Yuan

Abstract—Core decomposition on uncertain graphs is a fundamental problem in graph analysis. Given an uncertain graph G, the core

decomposition problem is to determine all ðk; hÞ-cores in G, where a ðk; hÞ-core is a maximal subgraph of G such that each node has an

h-degree no less than k within the subgraph. The h-degree of a node v is defined as the maximum integer r such that the probability that v

has a degree no less than r is larger than or equal to the threshold h 2 ½0; 1�. The state-of-the-art algorithm for solving this problem is

based on a peeling technique which iteratively removes the nodes with the smallest h-degrees and also dynamically updates their

neighbors’ h-degrees. Unfortunately, we find that such a peeling algorithm with the dynamical h-degree updating technique is incorrect

due to the inaccuracy of the recursive floating-point number division operations involved in the dynamical updating procedure. To

correctly compute the ðk; hÞ-cores, we first propose a bottom-up algorithm based on an on-demand h-degree computational strategy. To

further improve the efficiency, we also develop a more efficient top-down algorithm with several nontrivial optimization techniques. Both

of our algorithms do not involve any floating-point number division operations, thus the correctness can be guaranteed. In addition, we

also develop the parallel variants of all the proposed algorithms. Finally, we conduct extensive experiments to evaluate the proposed

algorithms using five large real-life datasets. The results show that our algorithms are at least three orders of magnitude faster than the

existing exact algorithms on large uncertain graphs. The results also demonstrate the high scalability and parallel performance of the

proposed algorithms.

Index Terms—Uncertain graphs, cohesive subgraph mining, uncertain core decomposition

Ç

1 INTRODUCTION

REAL-WORLD graphs, such as social networks, web graphs,
and biological networks often contain cohesive subgraph

structures. Mining cohesive subgraphs from a graph is a fun-
damental problem in graph analysis which has attracted
much attention in the database and datamining communities
[1], [2], [3], [4]. However, many real-world graphs, such as
protein-protein interaction (PPI) networks [5], sensor net-
works [6], and influence networks [7], are typically uncertain
in nature, where each edge is associated with a probability
denoting the likelihood of the existence of the edge.

Recently, many cohesive subgraph mining models on
uncertain graphs have been proposed. Notable examples
including the ðk; hÞ-core model [8], [9], [10], the ðk; hÞ-truss
model [11], [12], and the uncertain maximal clique model
[13], [14], [15]. In this paper, we focus mainly on the
ðk; hÞ-core model, since such a model is simple and easy to
compute than the other models.

Given an uncertain graph G and a probabilistic threshold
h 2 ½0; 1�, a ðk; hÞ-core is a maximal subgraph C of G satisfying
that each node in C has an h-degree no less than k. Here the
h-degree of a node v is defined as the maximum integer r such
that the probability that v has a degree no less than r is greater
than or equal to h 2 ½0; 1�. To compute all the ðk; hÞ-cores of G,
Bonchi et al. [8] proposed a peeling algorithmwith an efficient
dynamical h-degree updating technique. The time complexity
of such a peeling algorithm is Oððmþ nÞdmaxÞ, where m, n,
and dmax denote the number of edges, the number of nodes,
and the maximum degree of the deterministic graph of G
respectively. Recently, Yang et al. [9] proposed an index-based
algorithm to query the ðk; hÞ-core of an uncertain graph G in
optimal time for any k and h, where the index is constructed
based on the peeling algorithm proposed in [8]. Li et al. [15]
proposed an improved peeling algorithmwith time complex-
ity Oððmþ nÞdÞ to compute all the ðk; hÞ-cores of G, where d

(d � dmax) is the maximum core number of the deterministic
graph of G.

Unfortunately, we discover that all the above mentioned
peeling algorithms [8], [9], [15] that are based on the dynam-
ical h-degree updating technique are incorrect. The reason is
that the dynamical h-degree updating procedure involves a
recursive floating-point number division operation which
will rapidly increase the floating-point number errors when
updating the h-degrees. More specifically, when updating the
h-degree of a node u using the algorithms proposed in [8], [9],
[15], the floating-point number error can be up to Oð 1

1�peÞ
i

where i is h-degree of u and pe is the probability of an edge
incident to u, and thus the h-degrees computed by the dynam-
ical updating procedure is extremely imprecise. As a conse-
quence, the ðk; hÞ-cores computed by the state-of-the-art

� Qiangqiang Dai, Rong-Hua Li, Guoren Wang, Zhiwei Zhang, and Ye
Yuan are with the Beijing Institute of Technology, Beijing 100081, China.
E-mail: {qiangd66, lironghuascut}@gmail.com, wanggrbit@126.com,
cszwzhang@outlook.com, yuanye@mail.neu.edu.cn.

� Rui Mao is with Shenzhen University, Shenzhen 518060, China.
E-mail: mao@szu.edu.cn.

Manuscript received 15 December 2020; revised 6 May 2021; accepted 27 May
2021. Date of publication 11 June 2021; date of current version 7 December
2022.
This work was supported in part by the National Key Research and Develop-
ment Program of China under Grant 2020AAA0108503, in part by NSFC
under Grants 62072034 and 61772346, and in part by CCF-Baidu Open Fund.
(Corresponding author: Rong-Hua Li.)
Recommended for acceptance by B. Glavic.
Digital Object Identifier no. 10.1109/TKDE.2021.3088504

196 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 1, JANUARY 2023

1041-4347 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:55:00 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8569-6558
https://orcid.org/0000-0002-8569-6558
https://orcid.org/0000-0002-8569-6558
https://orcid.org/0000-0002-8569-6558
https://orcid.org/0000-0002-8569-6558
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-3645-5520
https://orcid.org/0000-0002-3645-5520
https://orcid.org/0000-0002-3645-5520
https://orcid.org/0000-0002-3645-5520
https://orcid.org/0000-0002-3645-5520
https://orcid.org/0000-0002-0247-9866
https://orcid.org/0000-0002-0247-9866
https://orcid.org/0000-0002-0247-9866
https://orcid.org/0000-0002-0247-9866
https://orcid.org/0000-0002-0247-9866
mailto:qiangd66@gmail.com
mailto:lironghuascut@gmail.com
mailto:wanggrbit@126.com
mailto:cszwzhang@outlook.com
mailto:yuanye@mail.neu.edu.cn
mailto:mao@szu.edu.cn

peeling algorithms [8], [9], [15] are incorrect. As an illustrative
example shown in Fig. 1, the correct h-core numbers of the
nodes fv5; . . . ; v8g are 2, while the ð2; hÞ-core obtained by the
state-of-the-art algorithms is fv1; . . . ; v4; v6; . . . ; v8g which is
incorrect.

To precisely compute the ðk; hÞ-cores, a basic solution is to
re-compute the h-degree of a node when it needs to update.
However, such a basic solution is inefficient due to a large
number of from-scratch re-computations of the h-degrees. To
overcome this critical issue,we first develop a bottom-up algo-
rithm with an on-demand h-degree re-computation technique
which can efficiently and precisely compute all ðk; hÞ-cores on
G. Specifically, the bottom-up algorithm applies a lower
bound of the h-core number to prune unnecessary h-degree re-
computations, and also adopts a lazy update technique to
reduce redundant computations. To further improve the effi-
ciency, we also propose a top-down algorithm with several
non-trivial optimization techniques. The top-down algorithm
computes the ðk; hÞ-cores following a decreasing order of k
(i.e., it first computes the ðk; hÞ-core with largest k). The strik-
ing feature of this algorithm is that inmany cases the h-degrees
can be computed by an incremental updating technique with-
out sacrificing accuracy. In addition, we also develop parallel
variants of all the proposed algorithms to further improve the
scalability of our algorithms. Finally, we conduct extensive
experiments using five large real-world datasets to evaluate
the proposed algorithms. The results show that the top-down
algorithm can achieve around 40� speedup over the bottom-
up algorithm and at least 1000� speedup over the basic algo-
rithm on a large uncertain graph with 2,180,759 nodes and
228,985,632 edges. The results also reveal that the speedup
ratio of our parallel bottom-up and top-down algorithms can
be up to 10when using 16 threads. Additionally, we also eval-
uate the accuracy of the state-of-the-art peeling algorithms [8],
[9], [15]. The results show that the h-core numbers of the nodes
obtained by these algorithms are nearly 100% incorrect for a
large k, indicating that ourwork is critical.

In summary, the main contributions of this work are as
follows.

� Wepoint out a critical error in the state-of-the-art algo-
rithms for computing the ðk; hÞ-cores on uncertain
graphs.

� We propose two new algorithms which can effi-
ciently and correctly compute the ðk; hÞ-cores on
uncertain graphs. We also develop parallel variants
for all our algorithms.

� We conduct extensive experiments using five large
real-world datasets to show the efficiency, scalabil-
ity, and accuracy of the proposed algorithms. The
source code of this paper is publicly accessible at
(https://github.com/qq-dai/UncertainCore).

Organizations. Section 2 introduces the notations, discuss
the existing solutions and analyze their defects. The pro-
posed bottom-up and top-down algorithms are presented
in Sections 3 and 4 respectively. The parallel versions of our
algorithms are studied in Section 5. Section 6 reports the
experimental results. We review related works in Section 7
and conclude this paper in Section 8.

2 PRELIMINARIES

Core Decomposition on Deterministic Graphs. Let G ¼ ðV;EÞ be
a deterministic undirected graph, where V and E are the set
of nodes and edges respectively. Denote by n and m the
number of nodes and edges of G respectively. The neighbor
set of v 2 V is denoted by NvðGÞ ¼ fujðv; uÞ 2 Eg. The
degree of v 2 V , denoted by dvðGÞ, is the cardinality of
NvðGÞ, i.e., dvðGÞ ¼ jNvðGÞj. Let GðCÞ ¼ ðVC;ECÞ be an
induced subgraph of G if VC 2 V and EC ¼ fðv; uÞ 2
Ejv; u 2 VCg. Given a deterministic undirected graph G ¼
ðV;EÞ and a positive integer k, a k-core is a maximal
induced subgraph GðCÞ in which every node v 2 VC has a
degree no less than k, i.e., 8v 2 VC; dvðGðCÞÞ � k [16]. The
core number of a node v in G, denoted by coreðvÞ, is the larg-
est integer k such that there exists a k-core containing u. The
core decomposition of a deterministic graph G is a problem
of computing the core numbers for all nodes inG. As shown
in [17], such a core decomposition problem can be solved in
OðnþmÞ time.

Core Decomposition on Uncertain Graphs. Let G ¼ ðV;E; pÞ
be an uncertain graph, where p is a function that maps the
existence probability of each edge to a real value in [0,1].
We denote by NvðGÞ ¼ fujðu; vÞ 2 Eg the neighborhood of
v 2 V in G. Similarly, the degree of v 2 V is denoted by
dvðGÞ ¼ jNvðGÞj. Following the standard uncertain graph
model [18], [19], [20], [21], we assume that the existence
probability of each edge in G is independent. Based on this,
the well-known possible world semantics [18] can be
applied to analyze uncertain graphs. More specifically, let
G ¼ ðV; EGÞ be a possible world of G. Then, the probabil-
ity of an observing possible world G, called PrðGÞ, is
defined as

PrðGÞ ¼
Y

e2EG

pe
Y

e2E=EG

ð1� peÞ: (1)

Clearly, there are 2jEj possible worlds for an uncertain
graph G. Based on the possible word semantic, Bonchi et al.
[8] introduced a k-core model for uncertain graphs, called
ðk; hÞ-core, which is defined as follows.

Definition 1 (ðk; hÞ-core). Given an uncertain graph G and a
probability threshold h 2 ½0; 1�, the ðk; hÞ-core is a maximal
induced subgraph G0 ¼ ðV 0; E0; pÞ in which the probability that
each node has a degree no less than k is greater than or equal to
h, i.e., 8v 2 V 0; Pr½dvðG0Þ � k� � h.

Based on the concept of ðk; hÞ-core, the core number of a
node v in G, denoted by h-coreðvÞ, is the largest k such that
there exist a ðk; hÞ-core containing v. Given an uncertain
graph G, and a probability threshold h 2 ½0; 1�, the core
decomposition on an uncertain graph is a problem of deter-
mining the h-core number for each node in G.

Fig. 1. Running example of core decomposition (h ¼ 0:3, the gray area
contains the nodes with h-core numbers equaling 2).

DAI ETAL.: CORE DECOMPOSITION ON UNCERTAIN GRAPHS REVISITED 197

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:55:00 UTC from IEEE Xplore. Restrictions apply.

https://github.com/qq-dai/UncertainCore

2.1 Existing Solutions

Let G�kv be the set of all possible world subgraphs of G such
that each node in a possible world subgraph has a degree
no less than k. Therefore, the probability Pr½dvðGÞ � k� of a
node v can be computed by

Pr½dvðGÞ � k� ¼
X

G2G�kv

PrðGÞ: (2)

By Eq. (2), the definition of the h-degree of a node v in G,
denoted by h-degvðGÞ, is given as follows.

Definition 2 (h-degree). Given an uncertain graph G and a
probability threshold h 2 ½0; 1�, the h-degree of v 2 V in G is
the largest integer k that satisfies Pr½dvðGÞ � k� � h.

Based on Definition 2, Bonchi et al. [8] developed a peel-
ing algorithm to compute the h-core number for each node
in the uncertain graph. Specifically, the peeling algorithm
iteratively removes the node that has the minimum h-degree
among all remaining nodes in G. The key step of this peeling
algorithm is to compute and update the h-degrees of nodes.
Below, we describe the dynamic programming (DP) algo-
rithm proposed in [8] to compute the h-degrees.

The DP Algorithm. First, we can easily derive the follow-
ing equation to compute the h-degree of a node

Pr½dvðGÞ � k� ¼ 1�
Xk�1

i¼0
Pr½dvðGÞ ¼ i�: (3)

By Eq. (3), the h-degree of v 2 V can be obtained by com-
puting Pr½dvðGÞ ¼ i�. Let EvðGÞ ¼ fe1; e2; . . . ; edvðGÞg be the
set of edges that incident to v in G. Denote by Eh

v ðGÞ ¼
fe1; e2; . . . ; ehg a subset that contains the first h edges of
EvðGÞ, where h � dvðGÞ. Denote by dvðGhvÞ the degree of v in
Ghv � G, where Ghv ¼ ðV;E n ðEvðGÞ n Eh

v ðGÞÞ; pÞ is a subgraph
of G that excludes the edges in EvðGÞ n Eh

v ðGÞ. The DP algo-
rithm is based on the following observation. If a node v has
a degree i, then there are two cases to be considered: (i)
either the edge edvðGÞ exists and dvðGdvðGÞ�1v Þ ¼ i� 1; (ii) or
the edge edvðGÞ does not exist and degvðGdvðGÞ�1v Þ ¼ i. Denote
by Xvðh; iÞ the probability of a node v that has a degree i in
Ghv . Then, the DP equation is as follows:

Xvðh; iÞ ¼ peiXvðh� 1; i� 1Þ þ ð1� peiÞXvðh� 1; iÞ:
(4)

The initial states of the DP equation are Xvð0; 0Þ ¼ 1,
Xvði;�1Þ ¼ 0 for all i 2 ½0; dvðGÞ�, and Xvðh; iÞ ¼ 0 for all 0 �
h < i � dvðGÞ. Obviously, XvðdvðGÞ; iÞ is equal to Pr½dvðGÞ ¼
i� for a node v, where i 2 ½0; dvðGÞ�. The time complexity for
computing the h-degree of a node v is OðdvðGÞh-degvðGÞÞ.

Note that after removing a node v, the peeling algorithm
needs to update the h-degrees of the neighbor nodes of v. A
basic algorithm is to recompute the h-degrees for all neigh-
bors of v using the DP algorithm. Clearly, such an algorithm
is costly. To avoid from-scratch re-computations, Bonchi
et al. [8] proposed a more-efficient updating technique
which can dynamically update the h-degrees of the neighbor
nodes. Let e ¼ ðv; uÞ 2 EvðGÞ be an incident edge v. When
removing a node v, the edge e is also deleted. Let G:e ¼
ðV;E n e; pÞ be the subgraph of G after deleting e. The
h-degree of u can be updated by computing Pr½dvðG:eÞ ¼ i�,

where i 2 ½0; h-deguðGÞ�. Specifically, Pr½dvðG:eÞ ¼ i� can be
computed by the following updating equation:

Pr½duðG:eÞ ¼ i� ¼ Pr½duðGÞ ¼ i� � pePr½duðG:eÞ ¼ i� 1�
1� pe

: (5)

Given that Pr½duðG:eÞ ¼ 0� ¼ Pr½duðGÞ ¼ 0�=ð1� peÞ, the
probability Pr½duðG:eÞ ¼ i� for all i 2 ½1; h-deguðGÞ� can be
calculated by Eq. (5) in Oðh-deguðGÞÞ time.

As shown in [8], the worst-case time complexity of the
peeling algorithm equipped with the updating technique is
OððnþmÞdmaxÞ, where dmax is the maximum degree among
all nodes in G. Recently, Li et al. [15] developed a more effi-
cient algorithm based on an improved DP procedure and a
similar updating techniquewhich reduces the time complex-
ity from OððnþmÞdmaxÞ to OððnþmÞdÞ, where d (d < dmax)
is themaximum core number of the deterministic graph of G.

2.2 Defect of Existing Solutions

Although the updating technique developed in [8], [9], [15]
is elegant and is also able to significantly improve the effi-
ciency of the peeling algorithm, it unfortunately cannot
obtain correct h-degrees due to the inaccuracy of the recur-
sive floating-point number division operation. As a conse-
quence, the core decomposition obtained by the peeling
algorithm with such an updating technique is incorrect. The
reasons are analyzed as follows.

Since the probability of each edge is a floating-point num-
ber, it often cannot be precisely stored in modern computers.
Let � (e.g., � 	 10�16) be the error of the floating-point number
representation of a computer. Then, in Eq. (5), the recursive
division operation on floating-point numbers will rapidly
increase the errors of the h-degrees. Suppose that the proba-
bilities Pr½duðGÞ ¼ i� for all i 2 ½0; h-deguðGÞ� have an � error.
Then, by Pr½duðG:eÞ ¼ 0� ¼ Pr½duðGÞ ¼ 0�=ð1� peÞ, the error
of Pr½duðG:eÞ ¼ 0� is increased to �=ð1� peÞ. By Eq. (5), it is
easy to derive that the error of Pr½duðG:eÞ ¼ 1� is further
enlarged to �=ð1� peÞ2. As a result, the error of Pr½duðG:eÞ ¼
i�will be increased to �=ð1� peÞiþ1 which is rather imprecise.
Recall that to update the h-degree of u, we need to compute
Pr½duðG:eÞ ¼ i� for all i 2 ½0; h-deguðGÞ�. Therefore, the error
of the h-degree of a node u obtained by the updating tech-
nique can be up to Oð�=ð1� peÞkÞ where k ¼ h-deguðGÞ,
resulting in that the core decomposition is largely incorrect.
The following illustrative example shows the incorrect core
decomposition obtained by the peeling algorithm with the
updating technique.

Example 1. Consider an uncertain graph G in Fig. 1. Suppose
that the parameter h ¼ 0:3 and the floating-point number
precision of the computer is 10�3 (i.e., the computer only
retains three significant digits for each probability). Fig. 1a
shows the nodes with an accurate h-core number 2, while
Fig. 1b shows the nodes with an h-core number 2 computed
by the peeling algorithm with the updating technique. Spe-
cifically, the peeling algorithm first deletes the nodes v9 and
v10, since their h-degrees are equal to 1. After removing v10,
the algorithm needs to update the h-degrees of its neighbor
nodes v5 and v8. Let us consider the neighbor node v5. Note
that before removing v10, the probabilities of each possible
degree of v5 are Pr½dv5 ¼ 0� ¼ 0:0102, Pr½dv5 ¼ 1� ¼ 0:152,
Pr½dv5 ¼ 2� ¼ 0:566 and Pr½dv5 ¼ 3� ¼ 0:272, respectively.

198 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 1, JANUARY 2023

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:55:00 UTC from IEEE Xplore. Restrictions apply.

After deleting the edge ðv10; v5Þ, the resulting probabilities
of v5 are Pr½dv5 ¼ 0� ¼ 0:102, Pr½dv5 ¼ 1� ¼ ð0:152� 0:9�
0:102Þ=0:1 ¼ 0:602 and Pr½dv5 ¼ 2� ¼ ð0:566� 0:9� 0:602Þ
=0:1 ¼ 0:242 respectively based on Eq. (5). Clearly, the
h-degree of v5 is equal to 1, thus v5 also needs to be removed
from G after deleting v10. As a result, the h-core number of v5
obtained by the peeling algorithm is 1 which is incorrect. In
addition, we observe that the sum of Pr½degv5 ¼ 0�,
Pr½degv5 ¼ 1� and Pr½degv5 ¼ 2� is less than 1 which further
implies that Eq. (5) leads to a significant error for updating
the probabilities. Similarly, we can derive that the h-core
numbers of the nodes fv1; . . . ; v4g computed by the peeling
algorithm are 2. However, the probabilities of each possible
degree of v5 in the subgraph induced by fv1; . . . ; v5g are
Pr½degv5 ¼ 0� ¼ 0:102, Pr½degv5 ¼ 1� ¼ 0:595, Pr½degv5 ¼
2� ¼ 0:302 respectively based on the Eq. (4), which indicates
that the correct h-core number of v5 is 2. Furthermore, we
can also compute the probabilities that each node has a
degree of 3 in the subgraph induced by fv1; . . . ; v4g which
are Pr½degv1 ¼ 3� ¼ 0:384, Pr½degv2 ¼ 3� ¼ 0:461, Pr½degv3 ¼
3� ¼ 0:448; Pr½degv4 ¼ 3� ¼ 0:302 respectively. As a result,
the correct h-core numbers of fv1; . . . ; v4g are equal to 3 in
this example. These results indicate that the state-of-the-art
peeling algorithms cannot obtain correct core decomposi-
tion on uncertain graphs.

Based on the above analysis, we know that all the previ-
ous peeling algorithms with the updating technique devel-
oped in [8], [9], [15] are doomed to obtain incorrect core
decomposition on uncertain graphs. A natural question is
that is there any other solutions that can correctly compute
all ðk; hÞ-cores of G? We answer this question affirmatively.
In fact, the basic peeling algorithm without using the updat-
ing technique can obtain correct core decomposition. When
deleting a node v, the basic peeling algorithm recomputes
the h-degrees of v’s neighbors using the DP algorithm
(Eq. (4)), instead of using the updating technique (Eq. (5)).
Unlike Eq. (5), the DP equation (Eq. (4)) does not include a
division operation, thus the error of the floating-point oper-
ation will not increase. Specifically, let a ¼ pa
 � and b ¼
pb
 � be the values with an � error in a computer. Based on
the analysis in [22], the errors for floating-point operations
excluding division are as follows: (i) a� b ¼ pa � pb þ
Oððpa þ pbÞ�þ �2Þ; (ii) aþ b ¼ pa þ pb þOð�Þ; (iii) a� b ¼
pa � pb þOð�Þ. Note that all floating-point values in uncer-
tain graphs are no larger than 1, thus Oððpa þ pbÞ�þ �2Þ is
bounded byOð�Þ, while Oð�=ð1� peÞÞ is hard to be bounded.
It can be seen that the error of each floating-point operation
excluding division is bounded by Oð�Þ. For a modern
computer, the error � 	 10�16 is extremely small, thus the
floating-point computations for a computer that do not
involve floating-point divisions are often very accurate.
As a result, the h-degrees computed by the DP algorithm
are very accurate, and thus the basic peeling algorithm
can obtain correct core decomposition. However, such a
peeling algorithm is inefficient, as it needs to frequently
recompute the h-degrees. In the following sections, we
will develop two novel algorithms which can signifi-
cantly reduce the from-scratch re-computations without
sacrificing accuracy.

3 THE BOTTOM-UP ALGORITHM

In this section, we propose a bottom-up algorithm to cor-
rectly compute the core decomposition on uncertain graphs
based on an on-demand h-degree computation technique.
Our algorithm follows a bottom-up computational manner
which first computes the h-core numbers for the low-core
nodes and then calculates the h-core numbers for the high-
core nodes. To reduce the re-computations of h-degrees, our
algorithm adopts an on-demand computation technique.
Specifically, the algorithm maintains a lower bound of the
h-core number for each node. After peeling a node v, the
neighbors with lower bounds no less than v’s h-degree are
definitely not removed from G in this iteration, and thus we
do not need to recompute the h-degrees for all these neigh-
bors. Below, we first introduce two existing lower bounds
of the h-core numbers, and then present our bottom-up algo-
rithm and a lazy update optimization.

3.1 Two Existing Lower Bounds

The ðh; kÞ-topcore Based Lower Bound. In [15], Li et al. introduced
a different concept of k-core on uncertain graphs, called
ðh; kÞ-topcore, in which the h-topcore number was shown to be
a lower bound of the h-core number for any node.

LetNk
v ðGÞ be the set of k edges with the highest probabili-

ties inNvðGÞ. The h-topdegree of a node is defined as follows.

Definition 3 (h-topdegree). Given an uncertain graph G and a
probabilistic threshold h 2 ½0; 1�, the h-topdegree of v 2 V ,
denoted by h-topdegvðGÞ, is a maximal k such that pk

vðGÞ � h,
where pk

vðGÞ ¼
Q

e2Nk
v ðGÞ pe, i.e., h-topdegvðGÞ ¼ maxfkjpk

vðGÞ
� hg.
By Definition 3, the definition of ðh; kÞ-topcore is given

below.

Definition 4 (ðh; kÞ-topcore). Given an uncertain graph G, a
positive integer k, and a probabilistic threshold h 2 ½0; 1�, an
ðh; kÞ-topcore is a maximal subgraph G0 ¼ ðV 0; E0; pÞ of G such
that each node v 2 V 0 has a h-topdegree no less than k.

By Definition 4, the h-topcore number of v, called
h-topcoreðvÞ, is a largest integer k such that there exists a sub-
graph ðh; kÞ-topcore containing v. Li et al. shown that
h-topcoreðvÞ is a lower bound of h-coreðvÞ for each node v in
G with any given h 2 ½0; 1� [15]. Moreover, as shown in [15],
all the ðh; kÞ-topcores can be computed by a similar peeling
algorithm using Oðmlog ðdmaxÞÞ time.

The Beta-Function Based Lower Bound. Another existing
lower bound of the h-core is based on a regularized beta
function which was proposed in [8]. In particular, Bonchi
et al. [8] proved the following inequality:

Pr½dvðGÞ � k� � IpminðvÞðk; dvðGÞ � kþ 1Þ; (6)

where pminðvÞ is the minimum probability in EvðGÞ and
Izða; bÞ ¼

Paþb�1
i¼a aþ b� 1izið1� zÞaþb�1�i is the regularized

beta function [23]. This regularized beta function is a cumula-
tive distribution of an event with an existence probability z
that occurs no less than a times of aþ b� 1 repeated experi-
ments. By Eq. (6), it is easy to derive that h-LBðvÞ ¼ maxfk 2
½0; . . . ; dvðGÞ�jIpminðvÞðk; dvðGÞ � kþ 1Þ � hg is a lower bound
of the h-degree of v. Based on h-LB, we can use a peeling

DAI ETAL.: CORE DECOMPOSITION ON UNCERTAIN GRAPHS REVISITED 199

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:55:00 UTC from IEEE Xplore. Restrictions apply.

algorithmwhich iteratively removes the node with the small-
est h-LB to obtain a lower bound of the h-core number for each
node. Bonchi et al. [8] shown that such a beta-function based
lower bound can be computed inOðmlog ðdmaxÞÞ time.

Remark. It is worth remarking that the above two lower
bounds can be computed accurately. This is because both of
these two lower bounds can be efficiently updated after
deleting an edge without involving recursive floating-point
number division operations [8], [15], and thus the algorithm
can obtain accurate lower bounds.

Algorithm 1. BottomUpUCDðG; hÞ
Input: an uncertain graph G ¼ ðV;E; pÞ and a parameter

h 2 ½0; 1�
Output: h-coreðvÞ for all v 2 V

1 ub core numbers of all nodes in the deterministic graph
of G

2 lb the final lower bound of all nodes
3 degðvÞ 0 for all v 2 V
4 k 0
5 while V 6¼ ; do
6 C fv 2 V jlbðvÞ ¼ kg
7 foreach v 2 C do
8 degðvÞ DPðG; v; ubðvÞÞ
9 D fv 2 V jdegðvÞ � k; lbðvÞ � kg
10 foreach v 2 D do
11 h-coreðvÞ k
12 Remove v fromD and V
13 foreach u 2 NvðGÞ s.t. degðuÞ > k do
14 degðuÞ DPðG; u; ubðuÞÞ
15 if degðuÞ � k D D [fug
16 k kþ 1
17 Procedure DPðG; v; ubðvÞÞ
18 Let NvðGÞ ¼ fe0; e1; . . . ; edvðGÞ�1g be the set of neighbors of v
19 F ði; 0Þ 1 for all i 2 ½0; dvðGÞ�
20 F ði� 1; iÞ 0 for all 0 < i � ubðvÞ
21 for i ¼ 1 to ubðvÞ do
22 for j ¼ i to dvðGÞ do
23 F ðj; iÞ ¼ pejF ðj� 1; i� 1Þ þ ð1� pejÞF ðj� 1; iÞ
24 if F ðdvðGÞ; iÞ < h return i� 1
25 return ubðvÞ

3.2 The Basic Bottom-Up Algorithm

Equipped with the above two lower bounds, we present a
bottom-up algorithm to compute the h-cores for all nodes.
Initially, the algorithm calculates two lower bounds for each
node, instead of computing the h-degrees. For each node,
the final lower bound is obtained by taking the maximum
value between these two lower bounds. The algorithm itera-
tively processes the nodes following a non-decreasing order
of the final lower bounds. In the kth iteration, the algorithm
only computes the h-degrees for the nodes with lower bound
equaling k. Then, the algorithm removes these nodes and
recomputes the h-degrees of the neighbor nodes if 1) their
previous h-degrees are larger than k and 2) their lower
bounds are less than or equal to k. The algorithm terminates
if all nodes are deleted. The detailed implementation of this
algorithm is shown in Algorithm 1.

Specifically, Algorithm 1 first computes the core numbers
of all nodes in the deterministic graph of G (line 1), which will

be applied to speed up theDPprocedure (lines 17-25) to calcu-
late the h-degree for each node as used in [15]. Then, Algo-
rithm 1 computes the final lower bound for each node (line 2)
and sets the initial h-degrees of all nodes to 0 (line 3). After
that, the algorithm iteratively calculates the ðk; hÞ-cores from
k ¼ 0 to k ¼ kmax (lines 5-16). In the kth iteration, the algo-
rithm computes the h-degrees of the nodes with lower bounds
equaling k (lines 6-8). The algorithm makes use of a set D to
maintain all the nodes whose h-degrees and lower bounds are
no larger than k (line 9). Then, for each node v 2 D, the algo-
rithm removes v from G and sets the h-core number of v to k
(lines 10-12). Subsequently, the algorithm invokes the DP pro-
cedure to recompute the h-degrees of v’s neighbors if their cur-
rent h-degrees are larger than k (lines 13-14). Note that the
h-degrees of the v’s neighbors with lower bounds larger than k
must be equal to the initial value 0. Therefore, the algorithm
does not need to recompute the h-degrees of those neighbors.
For a neighbor node u, if its updated h-degree is smaller than
or equal to k, the algorithm adds it to the set D (line 15). By
this algorithm, all the nodes with h-core numbers equaling k
can be identified in the kth iteration.

Since Algorithm 1 recomputes the h-degrees using the DP
algorithm, the correctness of the algorithm can be guaran-
teed. The following example illustrates how the algorithm
works.

Example 2. Consider the uncertain graph G in Fig. 1. Sup-
pose that h ¼ 0:3. Then, we can easily derive that the
h-topcore numbers of the nodes fv9; v10g are 1, the h-topcore
numbers of the nodes fv5; . . . ; v8g are 2, and the h-topcore
numbers of the remaining nodes fv1; . . . ; v4g are 3. Since
the topcore based lower bound is tight in this example, we
do not consider the beta-function based lower bound. In
the peeling stage, Algorithm 1 calculates the h-degrees of
nodes fv9; v10g which are equal to 1, and thus obtain D ¼
fv9; v10g. Then, Algorithm 1 sets the h-core numbers for
fv9; v10g to 1. When removing nodes in D, none of their
neighbors need to recompute the h-degrees, because the
lower bounds of all the neighbors are larger than 1. In the
second iteration, the algorithm calculates the h-degrees for
the nodes fv5; . . . ; v8g, and then setD ¼ fv5; . . . ; v8g. Then,
for each node in D, the algorithm removes it from G and
sets the h-core number to 2. Similarly, there is no neighbor
whose h-degree needs to be recomputed. In the third itera-
tion, we can easily obtain that the nodes fv1; . . . ; v4g will
be removed from Gwhose h-core numbers are set to 3.

The above example indicates that Algorithm 1 with a
good lower bound can significantly avoid from-scratch re-
computations of h-degrees. In our experiments, we will
show that Algorithm 1 is indeed much more efficient than
the existing peeling algorithm. Below, we analyze the time
and space complexity of Algorithm 1.

Theorem 1. The worst-case time and space complexity of Algo-
rithm 1 is Oððmþ nÞdmaxdÞ and Oðmþ nÞ respectively, where
d is the maximum core number of the deterministic graph of G.

Proof. For the time complexity, the algorithm first takes
Oððmþ nÞlog ðdmaxÞÞ to compute the lower bounds. When
peeling a node v, the algorithm needs to 1) compute the
h-degree of v which consumes OðdvcvÞ time complexity,

200 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 1, JANUARY 2023

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:55:00 UTC from IEEE Xplore. Restrictions apply.

and 2) recompute the h-degrees of v’s neighbors which
takes at most OðPu2NvðGÞ cu � duÞ. As a result, the total
time overhead consumed in the peeling stage is
OðPv2V

P
u2NvðGÞ ðcu � duÞÞ < Oððmþ nÞdmaxdÞ. For the

space complexity, the algorithm only uses several linear-
size arrays to maintain the h-degrees, the h-core numbers
and the setD. In the DP procedure, we can use two arrays
to maintain the values of F (line 23) which consumes at
most OðnÞ space. Therefore, the total space complexity of
Algorithm 1 is Oðmþ nÞ. tu

Algorithm 2. ImpBottomUpUCDðG; hÞ
Input: an uncertain graph G ¼ ðV;E; pÞ and a parameter

h 2 ½0; 1�
Output: h-coreðvÞ for all v 2 V

1 Lines 1-9 of Algorithm 1
2 whileD 6¼ ; do
3 Q S

v2Dfu 2 NvðGÞjdegðuÞ > kg h-coreðvÞ k for all
v 2 D

4 Remove all nodes ofD from G and setD ;
5 foreach u 2 Q do
7 degðuÞ DPðG; u; ubðuÞÞ
8 if degðuÞ � k D D [fug
9 Lines 16-25 of Algorithm 1

3.3 The Lazy Update Optimization

Although Algorithm 1 can largely avoid from-scratch re-
computations of h-degrees with a tight lower bound, there is
still much room for optimization. In particular, we observe
that if two nodes u and v are removed in the same iteration,
the h-degrees of their common neighbors may be recom-
puted twice by u and v respectively. Based on this observa-
tion, we develop a lazy update optimization to further
reduce the from-scratch re-computations of h-degrees. Our
optimized algorithm is shown in Algorithm 2.

Similar to Algorithm 1, Algorithm 2 first computes the
upper and lower bounds of all nodes in the initial stage
(line 1). Then, in the peeling stage, Algorithm 2 also obtains
a node set D which contains all nodes to be removed in the
current iteration. Unlike Algorithm 1, when removing a
node v 2 D from G, Algorithm 2 does not immediately
recompute the h-degree of v’s neighbors that have an
h-degree larger than k. Instead, it pushes those nodes into a
set Q in which each node only appears once (line 3). After
that, Algorithm 2 recomputes the h-degrees for each node in
Q (lines 6-8). Clearly, Algorithm 2 only recomputes the
h-degree of a neighbor node at most once when removing
the nodes inD. Thus, Algorithm 2 can significantly improve
the efficiency of the basic bottom-up algorithm, which is
also confirmed in our experiments.

4 THE TOP-DOWN ALGORITHM

In the previous section, we have proposed a bottom-up
algorithm to reduce from-scratch re-computations of
h-degrees. However, its performance is dependent on the
quality of the lower bound. Since two existing lower bounds
used in Algorithm 1 are often not very tight in real-world
graphs, the algorithm may still be very costly when han-
dling large real-world graphs. To further improve the

efficiency, in this section, we develop a top-down algorithm
which does not rely on the lower bounds.

4.1 The Basic Top-Down Algorithm

Unlike the bottom-up algorithm, the top-down algorithm
computes the ðk; hÞ-cores from k ¼ kmax to k ¼ 0. The chal-
lenges in developing an efficient top-down algorithm are
twofold: 1) how to efficiently identify the ðkmax; hÞ-core from
the uncertain graph G; 2) how to reduce the unnecessary
computations when computing ðk0; hÞ-core given that all the
ðk; hÞ-cores with k > k0 have already been obtained. Below,
we describe our solution to tackle these challenges.

For each node u, let ubðuÞ ¼ coreðuÞ be the core number of
u in the deterministic graph G of Gwhich is an upper bound
of the h-core number of u. Let C�k ¼ ðV �k; E�k; pÞ be a sub-
graph of G induced by the nodes in V �k, where each node in
V �k has a core number no less than k (coreðvÞ � k for each
v 2 V �k). Clearly, the ðk; hÞ-core of G must be contained in
the subgraph C�k for any parameter h 2 ½0; 1�. That is to say,
we can exactly compute the ðk; hÞ-core in the subgraph C�k,
instead of in the original uncertain graph G. Based on this,
we can devise an efficient binary-search algorithm to iden-
tify the ðkmax; hÞ-core.

In particular, we assume that maxc is the maximum core
number of the deterministic graph G of G. The binary-search
algorithm first computes the ðmaxc

2 ; hÞ-core in C�maxc
2 . Note

that for a given k ¼ maxc
2 , we can make use of a peeling algo-

rithm to compute the ðk; hÞ-core by iteratively removing the
nodes with h-degrees smaller than k. If there is no such a
ðmaxc

2 ; hÞ-core, the algorithm continues to detect the

ðmaxc
4 ; hÞ-core in C�maxc

4 . Otherwise, it tries to find the

ð3maxc
4 ; hÞ-core in C�3maxc

4 . The binary-search algorithm termi-
nates until the ðkmax; hÞ-core is identified. The number of
iterations of the binary search procedure is bounded by
OðlogðmaxcÞÞ.

After obtaining the ðkmax; hÞ-core, the top-down algo-
rithm then sequentially computes the other ðk; hÞ-cores from
k ¼ kmax � 1 to k ¼ 0. Below, we develop several non-trivial
optimization techniques to reduce the unnecessary compu-
tations by fully using the already computed information.

(i) Optimizing the binary search procedure. Recall that the
binary search algorithm tries to compute ðk0; hÞ-core in C�k0
if the ðk; hÞ-core exists in C�k, where k0 is a mean value
between k and the upper bound of the maximum h-core. We
observe that it is not necessary to detect the ðk0; hÞ-core in
C�k0 , since the ðk0; hÞ-core is included in the ðk; hÞ-core with
k0 > k. Therefore, it is sufficient to compute the ðk0; hÞ-core
in the subgraph induced by the nodes in the ðk; hÞ-core with
h-degrees no less than k0. Clearly, such an induced subgraph
is no larger than C�k0 , thus the binary search procedure can
be accelerated by using this optimization.

(ii) Optimizing the ðk; hÞ-core computation for large k values.
Let maxlb be the minimal k such that the ðk; hÞ-core is suc-
cessfully detected by the binary search algorithm (i.e., the
first k that the binary search algorithm detects a ðk; hÞ-core).
Clearly, the h-degrees of the nodes in the ðmaxlb; hÞ-core
have already been obtained after detecting the
ðmaxlb; hÞ-core. When computing the ðk; hÞ-core for each k 2
½maxlbþ 1; kmax � 1�, we do not need to compute the
h-degrees for the nodes in C�k. Instead, we can directly use

DAI ETAL.: CORE DECOMPOSITION ON UNCERTAIN GRAPHS REVISITED 201

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:55:00 UTC from IEEE Xplore. Restrictions apply.

the h-degrees of the nodes that have been already computed
in the ðmaxlb; hÞ-core to compute the ðk; hÞ-core for all k 2
½maxlbþ 1; kmax � 1�. This is because the ðk; hÞ-core for each
k 2 ½maxlbþ 1; kmax � 1� is contained in the ðmaxlb; hÞ-core,
thus it is sufficient to compute such ðk; hÞ-cores in the
ðmaxlb; hÞ-core.

(iii) Incremental update of h-degrees. When the algorithm cal-
culates the ðk; hÞ-core for a particular k, it needs to initially com-
pute the h-degree for each node in C�k. Interestedly, we find
that by the top-down computational manner, the h-degrees of
the nodes in the initial stage of computing the ðk; hÞ-core can be
incrementally updated, instead of recomputing them from
scratch. Specifically, suppose that we have already obtained
the ðk; hÞ-cores for k � �k. Then, when we compute the
ðk; hÞ-cores for all k < �k, the h-degree of a node v in C�k can be
updated based on the h-degree of v in C��k by using Eq. (4). This
is because C��k is a subgraph of C�k, thus to compute the
h-degree of v in C�k, we only need to add the edges from
C�knC��k to update the h-degree of v in C��k which can be done
by using Eq. (4). It is important to note that Eq. (4) does not
involve any floating-point number division operations, thus
the incremental computations of h-degrees can be accurate.

(iv) Optimizing the computation of h-degrees. As shown in the
DP procedure (see lines 17-25 of Algorithm 1), the time cost for
computing the h-degree of a node v relies on the upper bound
of v. We note that the upper bound of the h-core number for
each node can be incrementally refined in our top-down algo-
rithm. Specifically, if a ðk; hÞ-core Hk is computed, the upper
bounds of the nodes in V nHk must be smaller than k, thus we
can use k� 1 to refine the upper bounds for all nodes in V nHk.
Based on the refined upper bounds, we can further reduce the
costs of computing the h-degrees. In addition, if the refined
upper bound of a node v in C�k is less than k and the current
h-degree of v is larger than or equal to k, thenwe do not need to
update the h-degree for v. This is because if the h-degree of a
node in a subgraph is no less than the upper bound of its h-core
number, then the h-degree truncated by its upper bound is still
equal to the upper bound, and thereby it is sufficient to cor-
rectly compute the ðk; hÞ-cores based on such truncated
h-degrees as shown in [15].

Implementation Details. The detailed implementation of
our algorithm is shown in Algorithm 3. To simplify the
description, Algorithm 3 only integrates the optimizations
(i), (ii) and (iii). Specifically, Algorithm 3 first invokes a
binary search procedure to detect the ðkmax; hÞ-core (lines 5-
14), in which optimization (i) (line 10) is employed after
obtaining the ðmaxlb; hÞ-core. Subsequently, Algorithm 3
starts to compute all ðk; hÞ-cores from kmax � 1 to 0 with opti-
mization (ii) (lines 16-24). In particular, if k � maxlb (lines 17-
18), the algorithm directly computes the ðk; hÞ-core by itera-
tively removing nodes that have an h-degree less than k in
the ðmaxlb; hÞ-core. Otherwise, the algorithm has to compute
or incrementally update the h-degrees of nodes in V �k

whose h-core is less than k (lines 20-22), and then it invokes
the peeling algorithm (lines 25-30) to compute the
ðk; hÞ-core. Note that the optimization (iii) is implemented in
line 9 and line 22, which can significantly reduce the redun-
dant computations of h-degrees.

Example 3. Consider the uncertain graph G in Fig. 1. Sup-
pose that h ¼ 0:3. Algorithm 3 first computes the upper

bound of each node’s h-core. Specifically, the upper
bound of v9 is 1, the upper bounds of fv5; . . . ; v8; v10g are
2 and the upper bounds of the other nodes are 3. Then, in
the binary search stage, the algorithm computes the
ðmaxlb; 0:3Þ-core and ðkmax; 0:3Þ-core which are fv1; . . . ; v8g
and fv1; . . . ; v4g respectively, where maxlb ¼ 2 and kmax ¼
3. Next, the algorithm starts to compute other
ðk; 0:3Þ-cores with k � 2 following a top-down manner.
For k ¼ 2, the algorithm can directly ignore it since
(2,0.3)-core has been computed previously. For k ¼ 1,
only two nodes fv9; v10g need to be computed. The algo-
rithm first computes the h-degree of v9 and updates the
h-degree of v10, and then it invokes the peeling procedure
to return the whole uncertain graph G as the (1,0.3)-core.

Algorithm 3. TopDownUCDðG; hÞ
Input: an uncertain graph G ¼ ðV;E; pÞ and a parameter

h 2 ½0; 1�
Output: h-coreðvÞ for all v 2 V

1 ub core numbers of all nodes in the deterministic graph
of G

2 V �k fv 2 V jubðvÞ � kg; h-coreðvÞ 0 for all v 2 V
3 Denote by C�k the subgraph of G induced by V �k

4 minc 0; maxlb 0; maxc maxv2V fubðvÞg
5 while minc � maxc do
6 k ðmincþ maxcÞ=2
8 for v 2 V �k s.t maxlb ¼ 0 do
9 if ubðvÞ � maxc then degðvÞ DPðC�k; v; ubðvÞÞ;
10 else Incrementally update degðvÞ;
11 if maxlb 6¼ 0 C�k ðk0; hÞ-core; then
12 if CoreðC�k; deg; k; hÞ then maxlb ¼ 0 maxlb k;
13 minc kþ 1; kmax k; k0 k
14 else maxc k� 1; kmax maxc;
15 k kmax � 1
16 while k > 0 do
17 if k � maxlb then
18 H ðmaxlb; hÞ-core; CoreðH; degðHÞ; k; hÞ
19 elase
20 for v 2 V �k s.t h-coreðvÞ < k do
21 if ubðvÞ ¼ k then degðvÞ DPðC�k; v; ubðvÞÞ;
22 else Incrementally update degðvÞ
23 CoreðC�k; deg; k; hÞ
24 k k� 1
25 Procedure CoreðG; deg; k; hÞ
26 curdeg deg
27 Iteratively remove the node v with curdegðvÞ < k from G,

and recompute the h-degree of its neighbors whose h-core is
less than k foreach remaining v in G s.t. h-coreðvÞ < k
doh-coreðvÞ k;

29 if G 6¼ ; then return true
30 else return false

Complexity Analysis. We analyze the time and space com-
plexity of Algorithm 3 in the following theorem.

Theorem 2. The worst-case time and space complexity of Algo-
rithm 3 is Oððmþ nÞdmaxdÞ and Oðmþ nÞ respectively, where
d is the maximum core number of the deterministic graph of G.

Proof. We first analyze the time complexity. First, Algo-
rithm 3 takes Oððmþ nÞdmaxÞ time to compute a ðk; hÞ-core
for a particular k based on a peeling algorithm (lines 25-

202 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 1, JANUARY 2023

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:55:00 UTC from IEEE Xplore. Restrictions apply.

30). Second, Algorithm 3 invokes a binary search proce-
dure to compute the ðkmax; hÞ-core which consumes at
most Oððmþ nÞdmaxlog ðdÞÞ time (lines 5-14). Third, to
compute the other ðk; hÞ-cores one by one which takes at
most Oððmþ nÞdmaxdÞ. As a result, the total time complex-
ity of Algorithm 3 is Oððmþ nÞdmaxdÞ. For the space com-
plexity, the algorithm only uses several additional linear-
size arrays to maintain the upper bounds and h-degrees.
Therefore, the space overhead of our algorithm is
Oðmþ nÞ. tu
Note that the worst-case time complexity of Algorithm 3

is the same as that of Algorithm 2. However, as shown in
our experiments, the practical performance of Algorithm 3
is often much better than that of Algorithm 2 on large uncer-
tain graphs due to the high pruning performance of the pro-
posed optimization techniques.

4.2 The Landmark-Core Based Algorithm

We notice that in Algorithm 3, there exist some nodes that
have an h-degree no less than k in C�k but their h-core num-
bers are much less than k. As a consequence, the h-degrees
of such nodes may be frequently recomputed in the peeling
procedure for computing the ðk; hÞ-cores. To reduce such
unnecessary re-computations, we develop two landmark-
core based top-down algorithms. The key idea of our algo-
rithms is as follows. First, similar to Algorithm 3, the algo-
rithms invoke a binary search procedure to compute the
ðmaxlb; hÞ-core and the ðkmax; hÞ-core. Second, to compute
the ðk; hÞ-cores for k 2 ½0;maxlb� 1�, the algorithms first par-
tition the interval ½0;maxlb� 1� by selecting some landmark
k values in ½0;maxlb� 1�, and then compute the ðk; hÞ-cores
based on the selected landmarks using the peeling proce-
dure. After that, the algorithms compute the ðk; hÞ-cores for
all k values in each subinterval on the subgraph induced by
the corresponding landmark ðk; hÞ-core (similar to optimiza-
tion (ii)).

More specifically, our first landmark selection strategy is
inspired by a binary search strategy. First, we partition the
interval ½0;maxlb� 1� into log ðmaxlbÞ subintervals. Let C�maxlb

2i

be a subgraph induced by the node setV
�maxlb

2i , where i is a pos-
itive integer in the interval ½1; blog ðmaxlbÞc þ 1� (we set 2i ¼
maxlb if i > logðmaxlbÞ). Then, we compute the ðmaxlb

2i
; hÞ-core

in C�maxlb

2i according to the non-decreasing order of i. After that,
we compute the ðk; hÞ-core for each k 2 ½maxlb

2i
þ 1; maxlb

2i�1 � in the
subgraph induced by the nodes that are 1) contained in the
ðmaxlb

2i
; hÞ-core, and 2) with h-degrees no less than k. An alterna-

tive landmark selection strategy is based on an isometric parti-
tion method. Specifically, the interval ½0;maxlb� 1� is first
partitioned into equal-size subintervals, and then a similar
landmark core based method is applied to compute the
ðk; hÞ-cores. In our experiments, we will show that such a sim-
ple isometric partition strategy is very efficient in practice.

5 THE PARALLEL ALGORITHMS

In this section, we develop parallel variants of all the pro-
posed algorithms. Below, we first propose a parallel algo-
rithm for computing the lower bounds used in the bottom-
up algorithms. Then, we will show how to parallelize the
ðk; hÞ-cores computation algorithms.

Algorithm 4. ParallelLowerBoundðG; hÞ
Input: an uncertain graph G ¼ ðV;E; pÞ and a parameter

h 2 ½0; 1�
Output lbðvÞ for all v 2 V

1 Compute h-topdegvðGÞ for each v 2 V in parallel;
2 B½i� ; parallel for each i 2 ½1; dmax�; k 0
3 cntðvÞ 1 for each v 2 V in parallel;
4 while G is not empty do
5 C fv 2 V jh-topdegvðGÞ ¼ kg
6 while C 6¼ ; do
7 parallel for v 2 C do
8 lbðvÞ k
9 Remove v from C and G
10 foreach u 2 NvðGÞ s.t. h-topdeguðGÞ > k do
11 i cntðuÞ++ (atomic operation)
12 B½i� B½i� [fug (atomic operation)
13 for i ¼ 1 to i ¼ lenðBÞ do
14 parallel for u 2 B½i� do
15 Update h-topdeguðGÞ
16 if h-topdeguðGÞ � k s.t. u =2 C then
17 C C [fug (atomic operation)
18 cntðuÞ 1
19 B½i� ;
20 k kþ 1

5.1 Parallel Lower Bound Computation

Recall that the ðh; kÞ-topcore based lower bound and the
beta-function based lower bound are derived by an iterative
peeling procedure. Here we develop an efficient parallel
algorithm to compute these lower bounds. Below, we focus
mainly on computing the ðh; kÞ-topcore based lower bound,
and the same technique can be easily adapted to calculate
the beta-function based lower bound.

The peeling algorithm computes the ðh; kÞ-topcore by iter-
atively removing the nodes with the smallest h-topdegree.
When deleting a node v, the algorithm also needs to update
the h-topdegrees of v’s neighbors. Clearly, the procedure of
updating neighbors’ h-topdegrees can be done in parallel.
However, such a straightforward parallel strategy is not
very efficient. This is because many nodes often have a few
neighbors that are needed to update their h-topdegrees, thus
the degree of parallelism of this algorithm can be very low.
Below, we develop a new edge-parallel strategy to improve
the parallel performance of the peeling algorithm.

The key idea of our algorithm is described as follows.
When removing a node v, we do not immediately update the
h-topdegrees of v’s neighbors. Instead, for each deleted edge
ðv; uÞ, we record the neighbor node u using a set B. Clearly,
for different neighbors recorded in B, we can update the
h-topdegrees in parallel. However, a node umay be a neighbor
of several nodes that are deleted in the kth iteration, thus for
the same neighbor node u, we cannot update u’s h-topdegree
in parallel. To overcome this issue, we can make use of an
array of setsB½i� (for i � dmax) to record the neighbors, satisfy-
ing that the neighbor nodes in B½i� for a particular i must be
different. Then, we can process each B½i� in parallel. The
detailed description of our algorithm is shown inAlgorithm4.

Algorithm 4 first computes the topcore for all nodes in G in
parallel (line 1). Then, the algorithm initializes an array of sets
B½i� (for i � dmax) and a counting array cnt which is used to

DAI ETAL.: CORE DECOMPOSITION ON UNCERTAIN GRAPHS REVISITED 203

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:55:00 UTC from IEEE Xplore. Restrictions apply.

record the number of times that a node acts as a neighbor of
the deleted nodes (lines 2-3). After that, the algorithm itera-
tively removes nodeswith h-topdegrees equaling k (from k ¼ 0
to k ¼ kmax) to compute the ðh; kÞ-topcores (lines 4-20). In the
kth iteration, the algorithm first identifies all nodes C with
h-topdegrees equaling k (line 5). Then, the algorithm processes
the nodes inC in parallel (lines 7-12). For each v 2 C, the algo-
rithm records the neighbors of v in a setB½i� (lines 10-12). Sub-
sequently, the algorithm updates the h-topdegrees for all nodes
in B½i� in parallel (lines 13-19). Note that the time complexity
of constructing the array of sets B½i� (for all i) is OðrÞ, where r
is the number of removed edges in the kth iteration (for any k).
Thus, the proposed edge-parallel strategy does not increase
the total time complexity of the algorithm. Moreover, the
degree of parallelism of the proposed edge-parallel strategy is
higher than that of the straightforward parallel strategy. For
example, suppose that there are C ¼ fv1; . . . ; vtg nodes to be
deleted in the k-iteration. Let di be the degree of vi 2 C. Then,
the maximum degree of parallelism of the straightforward
strategy is d̂ ¼ maxfd1; . . . ; dtg. However, for the edge-parallel
strategy, the maximum degree of parallelism can be up to ~d ¼
j S v2CfNvðGÞgj ¼ B½1�which is no less than d̂.

5.2 Parallel Uncertain Core Decomposition

We find that Algorithms 2 and 3 can be easily parallelized,
since the re-computations of nodes’ h-degrees are completely
independent in these algorithms. The critical thing that
should be noted for devising the parallel variants of these
algorithms is as follows. In the kth iteration, all the neighbors
of the deleted nodes that have an h-degree larger than k must
be sequentially pushed into a set Q, and then we can recom-
pute their h-degrees in parallel. Due to the space limit, we only
introduce the details of the parallel version of Algorithm 2,
since the parallel peeling procedure of Algorithm 3 can be
implemented in a similar manner. The detailed description of
our parallel algorithm is shown inAlgorithm 5.

Algorithm 5. PUCDðG; hÞ
Input: an uncertain graph G ¼ ðV;E; pÞ and a parameter

h 2 ½0; 1�
Output: h-coreðvÞ for all v 2 V

1 ub parallel core decomposition in the deterministic
graph of G

2 lb ParallelLowerBoundðG; h);
3 degðvÞ 0 for all v 2 V in parallel;
4 k 0
5 while G is not empty do
6 C fv 2 V jlbðvÞ ¼ kg
7 degðvÞ DPðG; v; ubðvÞÞ for all v 2 C in parallel;
8 D fv 2 V jdegðvÞ � k; lbðvÞ � kg;Q ;
9 whileD 6¼ ; do
10 parallel for v 2 D do
11 h-coreðvÞ k
12 Remove v fromD and G
13 foreach u 2 NvðGÞ s.t. degðuÞ > k do
14 if u =2 Q Q Q [fug (atomic operation);
15 parallel for u 2 Q do
16 degðuÞ DPðG; u; ubðuÞÞ
17 if degðuÞ � k D D [fug (atomic operation);
18 k kþ 1

In the initial stage, Algorithm 5 first invokes the parallel
lower and upper bound algorithms to obtain the bounds of
the h-core number for each node (lines 1-2). Note that we
can use an existing parallel core decomposition algorithm
for deterministic graphs [24] to compute the upper bound.
Then, in the peeling stage (lines 5-18), the algorithm first
computes the h-degrees of nodes whose lower bounds are
equal to k in parallel (lines 6-7), and adds all nodes to be
deleted into a set D (line 8). Subsequently, the algorithm
processes the nodes in D in parallel (lines 10-14). Note that
for each neighbor of a node in D, if it needs to update its
h-degree, the algorithm adds it into a set Q with an atomic
add operation, because Q is a shared variable by different
threads. After that, the algorithm recomputes the h-degrees
of the nodes in Q in parallel (lines 15-17), since the re-com-
putation of the h-degree of each node in Q is independent.
Similarly, the algorithm also invokes an atomic add operation
to maintain the set D (line 17). The algorithm terminates if
all nodes are removed from G. Clearly, the total CPU time of
Algorithm 5 is equal to that of Algorithm 2.

6 EXPERIMENTS

In this section, we conduct extensive experiments to evalu-
ate the efficiency, scalability, and accuracy of different algo-
rithms. Below, we first introduce the experimental setup
and then report our results.

6.1 Experimental Setup

We implement five sequential algorithms Basic, BU, BUþ, TD,
and TDþ to compute the accurate ðk; hÞ-cores. Basic is the
state-of-the-art exact peeling ðk; hÞ-core algorithm proposed
by Bonchi et al. [8], which invokes the DP algorithm to
recompute h-degrees in each iteration. BU denotes our basic
bottom-up algorithm described in Algorithm 1, and BUþ is
the bottom-up algorithm with the lazy update optimization,
i.e., Algorithm 2. TD denotes the basic top-down algorithm
presented in Algorithm 3, and TDþ is the landmark-core
based top-down algorithm proposed in Section 4.2. Note
that for TDþ, we make use of the isometric-partition based
landmark selection strategy, as it is more efficient than the
binary-search based partition strategy. We will evaluate the
effect of different landmark selection strategies in Exp-2. In
addition, we also implement two parallel versions of BUþ
and TDþ using OpenMP which are denoted by PBUþ and
PTDþ respectively. All algorithms are implemented in C++.
All experiments are tested on a PC with two 2.1 GHz Xeon
CPUs (16 cores in total) and 128GB memory running Cen-
tOS 7.6.

Datasets. We make use of five large real-world graphs to
evaluate the efficiency and scalability of our algorithms. Table 1
shows the detailed statistics of each dataset, where the last two
columns represent the maximum degree and maximum core
number of the graph, respectively.DBLP is a scientific collabora-
tion network which is extracted from the DBLP computer sci-
ence bibliography (http://dblp.uni-trier.de/xml/). Both Wiki

and Stackof are the communication networks, while both SocLJ

and Hollywood are social networks. DBLP, Wiki, and Stackof are
weighted graphswhere each edge ðu; vÞ denotes the interaction
frequency between u and v, while SocLJ and Hollywood are un-
weighted graphs. We download the Wiki and SocLJ datasets

204 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 1, JANUARY 2023

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:55:00 UTC from IEEE Xplore. Restrictions apply.

http://dblp.uni-trier.de/xml/

from (http://konect.cc/networks/). Stackof and Hollywood are
downloaded from (http://snap.stanford.edu/data/) and
(http://law.di.unimi.it/datasets.php), respectively.

For each dataset, we generate an uncertain graph using
two different methods. For the first method, we indepen-
dently generate a probability for each edge of a graph based
on a [0,1] uniform distribution. For the second method, we
adopt an exponential distribution to generate the probabil-
ity for each edge which has been widely used in the uncer-
tain graph mining literature [9], [18], [21]. More specifically,
for the weighted graphs, we make use of an exponential
cumulative distribution with expectation 2 to the weight of
an edge to generate a probability. For the un-weighted
graphs, we first randomly assign a weight to each edge, and
then use the same exponential distribution method to gener-
ate the probabilities. In our experiments, the dataset named
with a suffix “uni” (“exp”) denotes the uncertain graph gen-
erated by the first (second) method.

Parameters. There is only one parameter in our algo-
rithms: h 2 ½0; 1�. In our experiments, the default value of h
is 0.4 unless otherwise specified. Note that if h ¼ 0, the
ðk; hÞ-core of G is the same as the k-core of the corresponding
deterministic graph.

6.2 Efficiency Testings

Exp-1: Efficiency of Sequential Algorithms. Fig. 2 shows the run-
time of Basic, BU, BUþ, TD, and TDþ on each dataset with a
varying h. The symbol “INF” means that the algorithm can-
not terminate within 10 days. From Fig. 2, we can see that all
the proposed algorithms are much faster than the state-of-
the-art exact algorithm Basic. As expected, the Basic algo-
rithm is very costly for computing the ðk; hÞ-core decomposi-
tion on all datasets due to the extensive from-scratch re-

computations of h-degrees. It even takes several days to com-
plete the computation on a medium-sized graph Wiki. Our
best algorithm TDþ, however, takes only a few seconds to
compute the ðk; hÞ-core decomposition on the same graph.
Generally, the proposed top-down algorithms are more effi-
cient than the bottom-up algorithms. The best top-down
algorithm TDþ significantly outperforms all the other com-
petitors on all datasets. In particular, TDþ can achieve up to
one order of magnitude faster than BUþ, two orders of mag-
nitude faster than BU, and three orders of magnitude faster
than Basic respectively on the largest dataset Hollywood. For
example, in Fig. 2j, when h ¼ 0:4, TDþ only takes 2,444 sec-
onds while TD, BUþ, and BU consume 12,847 seconds, 91,073
seconds, and 293,668 seconds respectively to compute all
ðk; hÞ-cores on Hollywood-uni. Generally, BUþ is 3� to 9� faster
than BU, and TDþ is 1� to 5� faster than TD on most datasets
due to the effect of the proposed optimization technique.
Moreover, we can see that all the proposed algorithms are
robust w.r.t. the parameter h on most datasets. These results
demonstrate the high efficiency of the proposed algorithms.

Additionally, we observe that the time overheads of BUþ
and BU on the uncertain graphs with probabilities generated
by the exponential cumulative distribution are generally less
than those of the same algorithms on the uncertain graphs
with uniform edge probabilities. This is because the edge
probabilities generated by the exponential cumulative distri-
bution are often larger than the uniform edge probabilities.
Thus, the lower bound (used in the bottom-up algorithms)
on the uncertain graphs with probabilities generated by the
exponential cumulative distribution is often much tighter,
compared to the uncertain graphs with uniform edge proba-
bilities. As expected, the runtime of TDþ and TD is not very
sensitive with respect to (w.r.t.) the two different types of
uncertain graphs. This is because the top-down algorithms
do not rely on the lower bound.

Exp-2: The Effect of Different Landmark Techniques. In this
experiment, we evaluate the effect of different landmark
selection strategies used in the top-down algorithm. Let
TD-B (TD-I) be the binary-search partition (isometric-parti-
tion) based landmark selection strategy. Fig. 3 shows the
runtime of different algorithms on SocLJ and Hollywood. The
results on the other datasets are consistent. From the Fig. 3,
we observe that TD-I significantly outperforms TD-B on all
datasets with all parameter settings. For example, when h ¼

TABLE 1
Datasets

Dataset jV j jEj dmax d

DBLP 2,536,460 22,056,096 3,087 263
Wiki 2,987,535 24,981,163 146,311 210
Stackof 2,601,977 63,497,050 44,065 198
SocLJ 4,847,571 68,475,391 22,887 372
Hollywood 2,180,759 228,985,632 13,107 1,296

Fig. 2. Runtime of different sequential algorithms.

DAI ETAL.: CORE DECOMPOSITION ON UNCERTAIN GRAPHS REVISITED 205

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:55:00 UTC from IEEE Xplore. Restrictions apply.

http://konect.cc/networks/
http://snap.stanford.edu/data/
http://law.di.unimi.it/datasets.php

0:4, TD-I takes 2,755 seconds to compute all ðk; hÞ-cores on
Hollywood-exp, while TD-B consumes 7,021 seconds to com-
plete the computation. These results indicate that the iso-
metric-partition strategy is more effective than the binary-
search based partition strategy to reduce the from-scratch
re-computations of h-degrees in our top-down algorithm.

Exp-3: Efficiency of Parallel Algorithms. In this experiment,
we evaluate the performance of the two parallel algorithms:
PBUþ and PTDþ. Fig. 4 shows the runtime of each algorithm
on five uncertain graphs with probabilities generated by
exponential cumulative distribution. The results on the
uncertain graphs with uniform edge probabilities are consis-
tent. From Fig. 4, we can see that the time consumptions of
all algorithms rapidly decrease as the number of threads
increases. Moreover, on most datasets, the speedup ratios of
both PTDþ and PBUþ can reach up to 10 using 16 threads. For
example, on Hollywood-exp, PTDþ and PBUþ take 2,755 and
100,979 seconds to compute all ðk; hÞ-cores with one thread
respectively. However, when using 16 threads, they only
consume 258 and 8,016 seconds to complete the ðk; hÞ-cores
computation respectively. These results indicate that both
PTDþ and PBUþ exhibit a very good parallel efficiency.

Exp-4: Efficiency of the Parallel Lower Bound Algorithms.
Here we evaluate the parallel performance of two lower-
bound computation algorithms with the edge-parallel strat-
egy proposed in Section 5.1. Let PLB-T and PLB-B be the
algorithms for computing topcore and the beta function
based lower bounds, respectively. Fig. 5 shows the runtime
of each lower-bound computation algorithm using different
number of threads on SocLJ and Hollywood. Similar results
can also be obtained on the other datasets. As can be seen in
Fig. 5, the runtime of each parallel algorithm quickly
decreases as the number of threads increases. The speedup
ratio of PLB-B is around 10 when using 16 threads, while

the speedup ratio of PLB-T is around 6.7. Moreover, we can
see that PLB-T is significantly faster than PLB-B, because the
update of the beta function is more expensive than the
update of the h-topdegree. These results confirm the high
efficiency of the parallel lower bound computation algo-
rithms with the edge-parallel strategy.

Exp-5: Scalability Testing.Herewe investigate the scalability
of the best bottom-up and top-down algorithms using the
largest dataset Hollywood. Specifically, we generate four sub-
graphs by randomly sampling 20–80% of nodes (edges) from
Hollywood, and evaluate the time overheads of our algorithms
on the four subgraphs. Figs. 6a and 6b show the scalability
results of BUþ and TDþ on Hollywood-exp using a single thread.
As can be seen, the runtime of TDþ increases smoothly as jV j
or jEj increases, while the runtime of BUþ increases sharply.
In addition, we also evaluate the scalability of the parallel ver-
sions of BUþ and TDþ. Figs. 6c and 6d show the scalability
results of parallel BUþ and TDþ using 16 threads. We can

Fig. 3. Runtime of the top-down algorithms with different landmark selec-
tion strategies.

Fig. 4. Runtime of different parallel algorithms (h ¼ 0:4).

Fig. 5. Runtime of parallel lower bound algorithms (h ¼ 0:4).

Fig. 6. Scalability of different algorithms.

206 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 1, JANUARY 2023

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:55:00 UTC from IEEE Xplore. Restrictions apply.

observe that the scalability of parallel algorithms is similar to
the corresponding sequential algorithms with varying jV j
and jEj. These results indicate that both the sequential and
parallel versions of TDþ exhibit a very good scalability perfor-
mance in computing all ðk; hÞ-cores.

Exp-6: Memory Overhead. In this experiment, we evaluate
the space consumptions of BUþ and TDþ. Fig. 7 shows the
memory overheads of BUþ and TDþ on all datasets. As can
be seen, the space usages of BUþ and TDþ is around twice
the graph size on all datasets, because both of these algo-
rithms have a linear space complexity. These results indi-
cate that both BUþ and TDþ are highly space-efficient.

6.3 Accuracy Testings

Exp-7: Accuracy of the Existing Algorithms. Recall that existing
algorithms [8], [9], [15] that use Eq. (5) to update the
h-degrees will obtain incorrect core decomposition due to
the inaccuracy of the recursive floating-point number divi-
sion operations. In this experiment, we study the accuracy
of such an inexact algorithm proposed in [15], denoted by
InExactUCD, which is shown to be faster than the inexact
algorithms proposed in [8], [9]. Note that we use 64 bits (the
double data type in C++) to represent a floating-point num-
ber in the implementation of the InExactUCD algorithm.

Let h-coreðvÞ be the h-core number of v 2 V generated by
InExactUCD, and the h-coreðvÞ is the correct h-core number of v
computed by our algorithms. We first evaluate the average
errors of the h-cores computed by InExactUCD using the follow-
ing two metrics: (i) ðPv2Ckðjh-coreðvÞ � h-coreðvÞjÞÞ=jCkj, and
(ii) ðPv2C�kðh-coreðvÞ �h-coreðvÞjÞÞ=jC�kj, where Ck is a set of
nodes with h-core numbers equaling k, and C�k is a set of
nodewith h-core number no less than k. Fig. 8 shows the result
on SocLJ and Hollywood, and the results on the other datasets

are consistent. In Figs. 8a and 8b, we can observe that for most
k values, the average errors of InExactUCD based on the first
metric are very high on both SocLJ and Hollywood. For a partic-
ular k, the maximum average error of InExactUCD can be
higher than 677 and 248 on Hollywood-uni and Hollywood-exp
respectively. From Figs. 8c and 8d, we can see that the average
errors of InExactUCD based on the second metric are also very
high. In general, the average errors of InExactUCD increase
with k increases, indicating that the high-order ðk; hÞ-cores
computed by InExactUCD are often much less precise than the
lower-order ðk; hÞ-cores obtained by InExactUCD. These results
indicate that the existing algorithms that apply Eq. (5) to
update the h-degrees are extremely imprecise for computing
the ðk; hÞ-cores on uncertain graphs.

To further evaluate the accuracy of the InExactUCD algo-
rithm, we also investigate the ratio of nodes that are with
incorrect h-core numbers computed by InExactUCD. Figs. 9a
and 9b show the error ratios among all nodes, while Figs. 9c
and 9d show the error ratios by only considering the nodes
in the top-50 ðk; hÞ-cores (i.e., the nodes with the top-50 high-
est h-core numbers). From Figs. 9a and 9b, we can clearly see
that there are at least 25% and 50% nodes that have incorrect
h-core numbers on SocLJ and Hollywood respectively. More-
over, the case is even worse when only considering the
nodes in the top-50 ðk; hÞ-cores. As can be seen from Figs. 9c
and 9d, the error ratios are near to 100% on both SocLJ and
Hollywood. These results further confirm that the InExactUCD

algorithm is incorrect for ðk; hÞ-cores computation.
Exp-8: The Effect of Floating-Point Number Precision. As

shown in Exp-7, the InExactUCD algorithm is extremely
imprecise when using 64-bits to represent a floating-point
number. A natural question is that can we improve the
accuracy of InExactUCD by using more bits to represent a
floating-point number. To answer this question, we imple-
ment InExactUCD using a high-precision floating-point num-
ber operation library, namely GMP library (https://gmplib.
org), to achieve high-precision representations of floating-
point numbers. Let p (p > 64) denotes the number of bits
used to represent a floating-point number. For convenience,
we set p ¼ sys to denote that a floating-point number is rep-
resented by using 64 bits (i.e., the double data type in C++).
Fig. 10 shows the results of error ratios of nodes in the top-
50 h-cores with different floating-point number precisions.
The results of error ratios among all nodes are consistent.

Fig. 7. Memory overheads of different algorithms.

Fig. 8. Average errors of the h-core numbers computed by the InExactUCD

algorithm proposed in [15].

Fig. 9. The ratio of nodes with incorrect h-core numbers computed by
InExactUCD.

DAI ETAL.: CORE DECOMPOSITION ON UNCERTAIN GRAPHS REVISITED 207

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:55:00 UTC from IEEE Xplore. Restrictions apply.

https://gmplib.org
https://gmplib.org

From Fig. 10, we can see that the error ratios do not sig-
nificantly decrease as p increases. Moreover, in most cases,
the error ratios keep unchanged with an increasing p. For
example, when h ¼ 0:2, the error ratios of nodes are 100%,
100%, and 99.94% on SocLJ-exp with p ¼ sys, p ¼ 128, and
p ¼ 256, respectively. These results indicate that we cannot
overcome the defect of existing algorithms by using high-
precision floating-point number operations.

Moreover, using high-precision floating-point number
operations with the GMP library also incurs high computa-
tional costs. Fig. 11 shows the runtime of the InExactUCD

algorithm with different floating-point number precisions
on SocLJ and Hollywood. We can see that the runtime of
InExactUCD increases as p increases. As expected, there is a
large gap in runtime between the algorithms implemented
by using or not using the GMP library. In particular, the
InExactUCD algorithm implemented with the 64-bits float-
ing-point number precision can be one order of magnitude
faster than the algorithm implemented by using the GMP
library on most datasets. Furthermore, by combining the
results shown in Fig. 2, we can see that our top-down algo-
rithm TDþ also can achieve 5� faster than InExactUCD imple-
mented by using the GMP library with p ¼ 128. These
results further confirm that TDþ is very efficient, and it can
achieve comparable runtime of the InExactUCD algorithm
even when it is implemented with the 64-bits floating-point
number precision.

7 RELATED WORKS

Uncertain Graph Mining. Uncertain graph mining has
attracted much attention in the database community. Nota-
ble examples include mining maximal cliques in uncertain
graphs [13], [14], [25], identifying reliable connected sub-
graphs in uncertain graphs [26], finding reliable clustering
in uncertain graphs [27], [28], performing influence analysis
on uncertain graphs [7], and clustering uncertain graphs
[29]. Recently, several cohesive subgraph models, including
k-core, k-truss, and maximal clique, have also been
extended to uncertain graphs. Specifically, Bonchi et al. [8]
extended the k-core model to uncertain graphs and pro-
posed a peeling algorithm to compute the core decomposi-
tion. Huang et al. [11] and Zou et al. [12] independently
extended the k-truss model to uncertain graphs and also
developed peeling-style algorithms to compute the truss
decomposition. Mukherjee [14], [25] generalized the tradi-
tional maximal clique model to the uncertain graph setting
and developed a branch-and-bound algorithm to enumerate
all maximal cliques on uncertain graphs. Based on the same
clique model, Li et al. [15] proposed an improved branch-
and-bound algorithm to enumerate maximal cliques on
uncertain graphs.

Core Decomposition on Graphs. Core decomposition is a
basic graph mining operator which has been widely applied
in many graph analysis applications [3], [30], [31], [32]. The
concept of k-core was first proposed by Seidman [16]. Bata-
gelj et al. [17] shown that the core decomposition of a graph
can be computed in linear time based on an elegant peeling
algorithm. Montresor et al. [33] developed an h-index itera-
tion algorithm to compute the core decomposition of a
graph in a distributive setting. Based on the same idea, Wen
et al. [34] proposed an I/O-efficient algorithm to calculate
the core decomposition on disk-resident graphs. Recently,
the problems of core decomposition have also been studied
on different types of graphs, including direct graphs [35],
streaming graphs [36], [37], [38], temporal graphs [39],
bipartite graphs [4], [40] and uncertain graphs [8], [9]. As
we discussed previously, the state-of-the-art algorithms for
core decomposition on uncertain graphs cannot obtain the
correct results. Our work focuses mainly on developing cor-
rect and efficient core decomposition algorithms for uncer-
tain graphs.

8 CONCLUSION

In this paper, we study the problem of computing the
ðk; hÞ-core decomposition on uncertain graphs. We first dis-
cover that the state-of-the-art algorithms for solving this prob-
lem are incorrect due to the imprecision of the recursive
floating-point number division operations. To solve this issue,
we propose an efficient bottom-up algorithm based on an on-
demand h-degree computation strategy which does not
involve any floating-point number division operation. To fur-
ther improve the efficiency, we also present a top-down
frameworkwith several carefully-designed optimization tech-
niques to compute all ðk; hÞ-cores. In addition, we also develop
parallel variants for all our proposed algorithms. The results
of extensive experiments on five large uncertain graphs dem-
onstrate the efficiency and scalability of our algorithms, as
well as the inaccuracy of the existing algorithms.

Fig. 10. The ratios of nodes with incorrect h-core numbers in the top-50
ðk; hÞ-cores with different floating-point number precisions.

Fig. 11. Runtime of InExactUCD with different floating-point number
precisions.

208 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 1, JANUARY 2023

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:55:00 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. Conte, D. Firmani, C. Mordente, M. Patrignani, and R. Torlone,
“Fast enumeration of large k-plexes,” in Proc. ACM SIGKDD Int.
Conf. Knowl. Discov. Data Mining, 2017, pp. 115–124.

[2] C. Lu, J. X. Yu, H. Wei, and Y. Zhang, “Finding the maximum cli-
que in massive graphs,” Proc. VLDB Endowment, vol. 10, no. 11,
pp. 1538–1549, 2017.

[3] R. Li et al., “Skyline community search in multi-valued networks,”
in Proc. Int. Conf. Manage. Data, 2018, pp. 457–472.

[4] B. Liu, L. Yuan, X. Lin, L. Qin, W. Zhang, and J. Zhou, “Efficient
(,)-core computation: An index-based approach,” in Proc. Int.
Conf. World Wide Web, 2019, pp. 1130–1141.

[5] J. S. Bader, A. Chaudhuri, J. M. Rothberg, and J. Chant, “Gaining
confidence in high-throughput protein interaction networks,”
Nat. Biotechnol., vol. 22, no. 1, pp. 78–85, 2004.

[6] H. Kawahigashi, Y. Terashima, N. Miyauchi, and T. Nakakawaji,
“Modeling ad hoc sensor networks using random graph theory,”
in Proc. 2nd IEEE Consum. Commun. Netw. Conf., 2005, pp. 104–109.

[7] Y. Mehmood, F. Bonchi, and D. Garc�ıa-Soriano, “Spheres of influ-
ence for more effective viral marketing,” in Proc. Int. Conf. Manage.
Data, 2016, pp. 711–726.

[8] F. Bonchi, F. Gullo, A. Kaltenbrunner, and Y. Volkovich, “Core
decomposition of uncertain graphs,” in Proc. ACM SIGKDD Int.
Conf. Knowl. Discov. Data Mining, 2014, pp. 1316–1325.

[9] B. Yang, D. Wen, L. Qin, Y. Zhang, L. Chang, and R.-H. Li, “Index-
based optimal algorithm for computing K-cores in large uncertain
graphs,” in Proc. IEEE 35th Int. Conf. Data Eng., 2019, pp. 64–75.

[10] F. Esfahani, V. Srinivasan, A. Thomo, and K. Wu, “Efficient com-
putation of probabilistic core decomposition at web-scale,” in
Proc. Int. Conf. Extending Database Technol., 2019, pp. 325–336.

[11] X. Huang, W. Lu, and L. V. S. Lakshmanan, “Truss decomposition
of probabilistic graphs: Semantics and algorithms,” in Proc. Int.
Conf. Manage. Data, 2016, pp. 77–90.

[12] Z. Zou and R. Zhu, “Truss decomposition of uncertain graphs,”
Knowl. Inf. Syst., vol. 50, no. 1, pp. 197–230, 2017.

[13] Z. Zou, J. Li, H. Gao, and S. Zhang, “Finding top-k maximal cli-
ques in an uncertain graph,” in Proc. IEEE 26th Int. Conf. Data
Eng., 2010, pp. 649–652.

[14] A. P. Mukherjee, P. Xu, and S. Tirthapura, “Mining maximal cli-
ques from an uncertain graph,” in Proc. IEEE 31st Int. Conf. Data
Eng., 2015, pp. 243–254.

[15] R.-H. Li, Q. Dai, G. Wang, Z. Ming, L. Qin, and J. X. Yu, “Improved
algorithms for maximal clique search in uncertain networks,” in
Proc. IEEE 35th Int. Conf. Data Eng., 2019, pp. 1178–1189.

[16] S. B. Seidman, “Network structure and minimum degree,” Soc.
Netw., vol. 5, no. 3, pp. 269–287, 1983.

[17] V. Batagelj and M. Zaversnik, “An O(m) algorithm for cores
decomposition of networks,” 2003, arXiv:cs/0310049.

[18] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios, “k-nearest neigh-
bors in uncertain graphs,” Proc. VLDB Endowment, vol. 3, no. 1,
pp. 997–1008, 2010.

[19] R. Jin, L. Liu, B. Ding, and H. Wang, “Distance-constraint reach-
ability computation in uncertain graphs,” Proc. VLDB Endowment,
vol. 4, no. 9, pp. 551–562, 2011.

[20] R.-H. Li, J. X. Yu, R. Mao, and T. Jin, “Efficient and accurate query
evaluation on uncertain graphs via recursive stratified sampling,”
in Proc. IEEE 30th Int. Conf. Data Eng., 2014, pp. 892–903.

[21] R.-H. Li, J. X. Yu, R. Mao, and T. Jin, “Recursive stratified sampling:
A new framework for query evaluation on uncertain graphs,” IEEE
Trans. Knowl. Data Eng., vol. 28, no. 2, pp. 468–482, Feb. 2016.

[22] R. Butt, “Introduction to numerical analysis using MATLAB,”
Jones & Bartlett Learning, 1st ed., 2009.

[23] E. W. Weisstein, “Binomial distribution,” 2002. [Online]. Available:
https://mathworld.wolfram.com/BinomialDistribution.html

[24] H. Kabir and K. Madduri, “Parallel k-core decomposition on mul-
ticore platforms,” in Proc. IEEE Int. Parallel Distrib. Process. Symp.
Workshops, 2017, pp. 1482–1491.

[25] A. P. Mukherjee, P. Xu, and S. Tirthapura, “Enumeration of maxi-
mal cliques from an uncertain graph,” IEEE Trans. Knowl. Data
Eng., vol. 29, no. 3, pp. 543–555, Mar. 2017.

[26] R. Jin, L. Liu, and C. C. Aggarwal, “Discovering highly reliable
subgraphs in uncertain graphs,” in Proc. ACM SIGKDD Int. Conf.
Knowl. Discov. Data Mining, 2011, pp. 992–1000.

[27] L. Liu, R. Jin, C. Aggarwal, and Y. Shen, “Reliable clustering on
uncertain graphs,” in Proc. IEEE 12th Int. Conf. Data Mining, 2012,
pp. 459–468.

[28] Y.-X. Qiu et al., “Efficient structural clustering on probabilistic
graphs,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 10, pp. 1954–1968,
Oct. 2019.

[29] K. Han et al., “Efficient and effective algorithms for clustering uncer-
tain graphs,” Proc. VLDB Endowment, vol. 12, no. 6, pp. 667–680,
2019.

[30] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani,
“K-core decomposition of internet graphs: Hierarchies, self-simi-
larity and measurement biases,” 2005, arXiv:cs/0511007v4.

[31] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani,
“Large scale networks fingerprinting and visualization using the
k-core decomposition,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
2005, pp. 41–50.

[32] C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis, “Evaluating
cooperation in communities with the k-core structure,” in Proc.
Int. Conf. Advances Soc. Netw. Anal. Mining, 2011, pp. 87–93.

[33] A. Montresor, F. De Pellegrini , and D. Miorandi, “Distributed k-
core decomposition,” IEEE Trans. Parallel Distrib. Syst., vol. 24,
no. 2, pp. 288–300, Feb. 2013.

[34] D. Wen, L. Qin, Y. Zhang, X. Lin, and J. X. Yu, “I/O efficient core
graph decomposition at web scale,” in Proc. IEEE 32nd Int. Conf.
Data Eng., 2016, pp. 133–144.

[35] C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis, “D-cores: Mea-
suring collaboration of directed graphs based on degeneracy,”
Knowl. Inf. Syst., vol. 35, no. 2, pp. 311–343, 2013.

[36] A. E. Sariy€uce, B. Gedik, G. Jacques-Silva , K.-L. Wu, and €U. V.
Çataly€urek, “Streaming algorithms for k-core decomposition,”
Proc. VLDB Endowment, vol. 6, no. 6, pp. 433–444, 2013.

[37] R.-H. Li, J. X. Yu, and R. Mao, “Efficient core maintenance in large
dynamic graphs,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 10,
pp. 2453–2465, Oct. 2014.

[38] Y. Zhang, J. X. Yu, Y. Zhang, and L. Qin, “A fast order-based
approach for core maintenance,” in Proc. IEEE 33rd Int. Conf. Data
Eng., 2017, pp. 337–348.

[39] R.-H. Li, J. Su, L. Qin, J. X. Yu, and Q. Dai, “Persistent community
search in temporal networks,” in Proc. IEEE 34th Int. Conf. Data
Eng., 2018, pp. 797–808.

[40] D. Ding, H. Li, Z. Huang, and N. Mamoulis, “Efficient fault-toler-
ant group recommendation using alpha-beta-core,” in Proc. ACM
Conf. Inf. Knowl. Manage., 2017, pp. 2047–2050.

Qiangqiang Dai is currently working toward the
PhD degree at the Beijing Institute of Technology
(BIT), Beijing, China. His research interests
include graph data management and mining,
social network analysis, and graph computation
systems.

Rong-Hua Li received the PhD degree from the
Chinese University of Hong Kong, Hong Kong, in
2013. He is currently a professor with the Beijing
Institute of Technology (BIT), Beijing, China.
Before joining BIT in 2018, he was an assistant
professor with Shenzhen University. His research
interests include graph data management and
mining, social network analysis, graph computa-
tion systems, and graph-based machine learning.

Guoren Wang received the BS, MS, and PhD
degrees from the Department of Computer Sci-
ence, Northeastern University, Shenyang, China,
in 1988, 1991, and 1996, respectively. Currently,
he is a professor with the Beijing Institute of Tech-
nology (BIT), Beijing, China. His research inter-
ests include XML data management, query
processing and optimization, bioinformatics, high
dimensional indexing, parallel database systems,
and cloud data management.

DAI ETAL.: CORE DECOMPOSITION ON UNCERTAIN GRAPHS REVISITED 209

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:55:00 UTC from IEEE Xplore. Restrictions apply.

https://mathworld.wolfram.com/BinomialDistribution.html

Rui Mao received the PhD degree in computer
science from the University of Texas at Austin,
Austin, Texas, in 2007. He is currently a professor
with Shenzhen University. His research interests
include big data analysis and management, con-
tent-based similarity query of multimedia and bio-
logical data, data mining, andmachine learning.

Zhiwei Zhang received the BS degree from the
Renmin University of China, Beijing, China, in
2010, and the PhD degree from the Chinese Uni-
versity of Hong Kong, Hong Kong, in 2014. He is
currently a professor with the Beijing Institute of
Technology (BIT), Beijing, China. His research
interests include federal learning, data pricing
and transaction, distributed system, blockchain,
and algorithm analysis.

Ye Yuan received the BS, MS, and PhD degrees
in computer science from Northeastern Univer-
sity, Boston, Massachusetts, in 2004, 2007, and
2011, respectively. He is now a professor with the
Beijing Institute of Technology (BIT), Beijing,
China. His research interests include graph data-
bases, probabilistic databases, and social net-
work analysis.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

210 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 1, JANUARY 2023

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:55:00 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

